276 research outputs found

    Multi-Channel Scheduling for Fast Convergecast in Wireless Sensor Networks

    Get PDF
    We explore the following fundamental question - how fast can information be collected from a wireless sensor network? We consider a number of design parameters such as, power control, time and frequency scheduling, and routing. There are essentially two factors that hinder efficient data collection - interference and the half-duplex single-transceiver radios. We show that while power control helps in reducing the number of transmission slots to complete a convergecast under a single frequency channel, scheduling transmissions on different frequency channels is more efficient in mitigating the effects of interference (empirically, 6 channels suffice for most 100-node networks). With these observations, we define a receiver-based channel assignment problem, and prove it to be NP-complete on general graphs. We then introduce a greedy channel assignment algorithm that efficiently eliminates interference, and compare its performance with other existing schemes via simulations. Once the interference is completely eliminated, we show that with half-duplex single-transceiver radios the achievable schedule length is lower-bounded by max(2nk − 1,N), where nk is the maximum number of nodes on any subtree and N is the number of nodes in the network. We modify an existing distributed time slot assignment algorithm to achieve this bound when a suitable balanced routing scheme is employed. Through extensive simulations, we demonstrate that convergecast can be completed within up to 50% less time slots, in 100-node networks, using multiple channels as compared to that with single-channel communication. Finally, we also demonstrate further improvements that are possible when the sink is equipped with multiple transceivers or when there are multiple sinks to collect data

    Algorithms for Fast Aggregated Convergecast in Sensor Networks

    Get PDF
    Fast and periodic collection of aggregated data is of considerable interest for mission-critical and continuous monitoring applications in sensor networks. In the many-to-one communication paradigm, referred to as convergecast, we focus on applications wherein data packets are aggregated at each hop en-route to the sink along a tree-based routing topology, and address the problem of minimizing the convergecast schedule length by utilizing multiple frequency channels. The primary hindrance in minimizing the schedule length is the presence of interfering links. We prove that it is NP-complete to determine whether all the interfering links in an arbitrary network can be removed using at most a constant number of frequencies. We give a sufficient condition on the number of frequencies for which all the interfering links can be removed, and propose a polynomial time algorithm that minimizes the schedule length in this case. We also prove that minimizing the schedule length for a given number of frequencies on an arbitrary network is NP-complete, and describe a greedy scheme that gives a constant factor approximation on unit disk graphs. When the routing tree is not given as an input to the problem, we prove that a constant factor approximation is still achievable for degree-bounded trees. Finally, we evaluate our algorithms through simulations and compare their performance under different network parameters

    On multicast flow control for heterogeneous receivers

    Full text link

    Cooperative sensing and compression in vehicular sensor networks for urban monitoring

    Get PDF
    A Vehicular Sensor Network (VSN) may be used for urban environment surveillance utilizing vehicle-based sensors to provide an affordable yet good coverage for the urban area. The sensors in VSN enjoy the vehicle's steady power supply and strong computational capacity not available in traditional Wireless Sensor Network (WSN). However, the mobility of the vehicles results in highly dynamic and unpredictable network topology, leading to packet losses and distorted surveillance results. To resolve these problems, we propose a cooperative data sensing and compression approach with zero inter-sensor collaboration overhead based on sparse random projections. The algorithm provides excellent reconstruction accuracy for the sensed field, and by taking advantage of the spatial correlation of the data, enjoys much smaller communication traffic load compared to traditional sampling algorithms in wireless sensor networks. Real urban environment data sets are used in the experiments to test the reconstruction accuracy and energy efficiency under different vehicular mobility models. The results show that our approach is superior to the conventional sampling and interpolation strategy which propagates data in an uncompressed form, with 4-5dB gain in reconstruction quality and 21-55% savings in communication cost for the same sampling times. ©2010 IEEE.published_or_final_versionThe IEEE International Conference on Communications (ICC) 2010, Cape Town, South Africa, 23-27 May 2010. In Proceedings of the IEEE ICC, 2010, p. 1-

    Dental Hygienists\u27 Knowledge of HIV, Attitudes Towards People with HIV and Willingness to Conduct Rapid HIV Testing

    Full text link
    This study was aimed to determine the dental hygienists\u27 knowledge of HIV, attitudes towards people living with HIV and willingness to conduct rapid HIV testing

    The Gibbs-Thomson formula at small island sizes - corrections for high vapour densities

    Full text link
    In this paper we report simulation studies of equilibrium features, namely circular islands on model surfaces, using Monte-Carlo methods. In particular, we are interested in studying the relationship between the density of vapour around a curved island and its curvature-the Gibbs-Thomson formula. Numerical simulations of a lattice gas model, performed for various sizes of islands, don't fit very well to the Gibbs-Thomson formula. We show how corrections to this form arise at high vapour densities, wherein a knowledge of the exact equation of state (as opposed to the ideal gas approximation) is necessary to predict this relationship. Exploiting a mapping of the lattice gas to the Ising model one can compute the corrections to the Gibbs-Thomson formula using high field series expansions. We also investigate finite size effects on the stability of the islands both theoretically and through simulations. Finally the simulations are used to study the microscopic origins of the Gibbs-Thomson formula. A heuristic argument is suggested in which it is partially attributed to geometric constraints on the island edge.Comment: 27 pages including 7 figures, tarred, gzipped and uuencoded. Prepared using revtex and espf.sty. To appear in Phys. Rev.

    Atomic step motion during the dewetting of ultra-thin films

    Full text link
    We report on three key processes involving atomic step motion during the dewetting of thin solid films: (i) the growth of an isolated island nucleated far from a hole, (ii) the spreading of a monolayer rim, and (iii) the zipping of a monolayer island along a straight dewetting front. Kinetic Monte Carlo results are in good agreement with simple analytical models assuming diffusion-limited dynamics.Comment: 7 pages, 5 figure

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented
    • 

    corecore